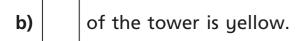
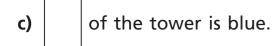
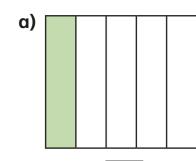
Unit and non-unit fractions

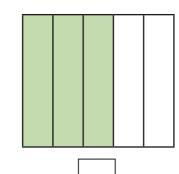

Write fractions to complete the sentences.

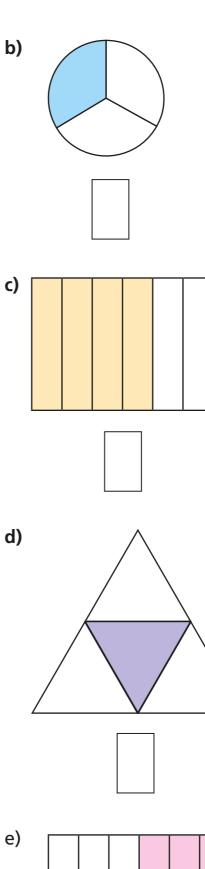


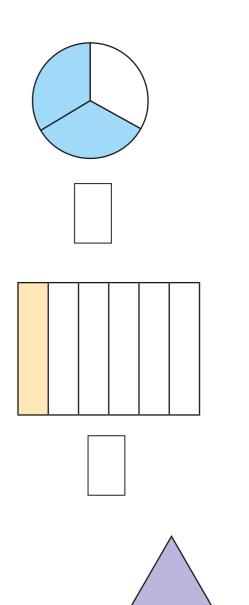

a)	of the	counters	are	yellow

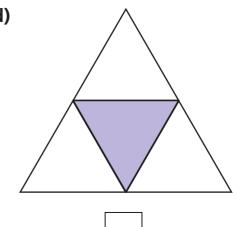
Write fractions to complete the sentences.

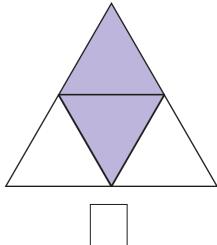

\		.l			
a)	ОТ	tne	tower	IS	green

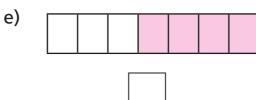


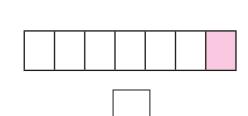


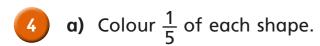


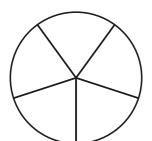

What fraction of each shape is shaded?

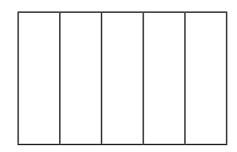


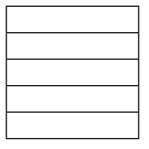


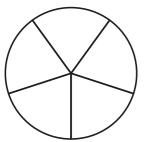


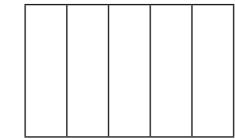




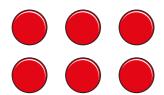

Tick the unit fraction in each pair of shapes.


How did you know which was the unit fraction?

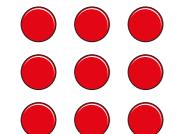




b) Colour $\frac{3}{5}$ of each shape.



What is the same and what is different about your answers?



a) Circle $\frac{1}{3}$ of the counters.

b) Circle $\frac{2}{3}$ of the counters.

What is the same and what is different about your answers?

Write the fractions in the table.

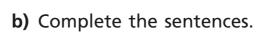
<u>1</u>6

<u>2</u> 3 3/4

1/10

18

<u>3</u> 5 <u>1</u>


<u>1</u> 99 <u>6</u> 1 <u>1</u> 250

Unit fractions	Non-unit fractions

Write two more examples of your own in each column.

a) What is a unit fraction? What is a non-unit fraction?

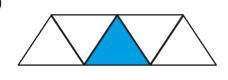
Talk about it with a partner.

An example of a unit fraction is

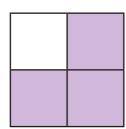
The numerator is always

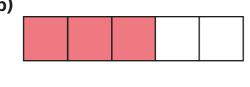
An example of a non-unit fraction is

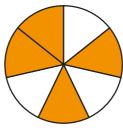

The numerator is always greater than



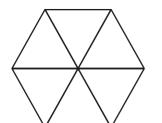
What is a fraction?

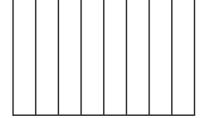



a)

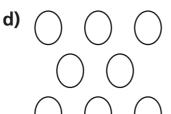

c)

b)

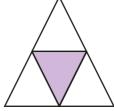

d)



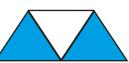
Shade each diagram to represent the fractions.


a)

c)

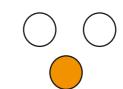

<u>10</u> 11

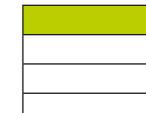
How do you know which are unit fractions?



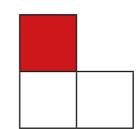
a) Tick the shapes with one third shaded.

Α



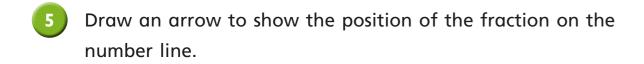


В

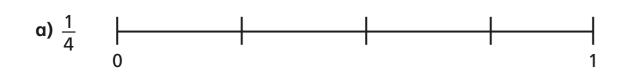


G

C


b) Complete the sentences to describe the shapes with one third shaded.

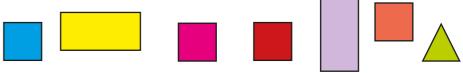
There are equal parts altogether.



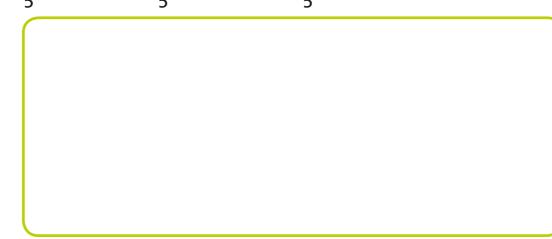
c)
$$\frac{1}{2}$$
 0

d)
$$\frac{1}{3}$$
 0

Oraw an arrow to show the position of $\frac{5}{5}$ on the number line.


What do you notice?

Draw four	different	representations	of 3
Diaw ioui	different	representations	$\frac{1}{4}$



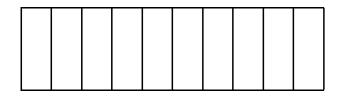
- a) What fraction of the shapes are triangles?
- b) What fraction of the shapes are squares?
- c) What fraction of the shapes have four sides?

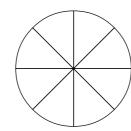
d)	Draw	2D	shapes	to	match	the	description
----	------	----	--------	----	-------	-----	-------------

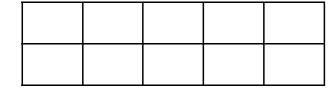
 $\frac{1}{5}$ are squares, $\frac{2}{5}$ are triangles, $\frac{3}{5}$ have more than 3 sides.

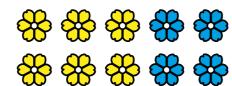
Compare shapes with a partner.

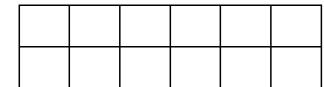
What is the same about your shapes? Is anything different?



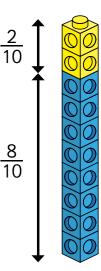



Tenths

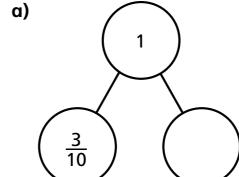


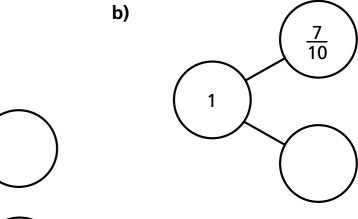

Tick the pictures that show tenths.

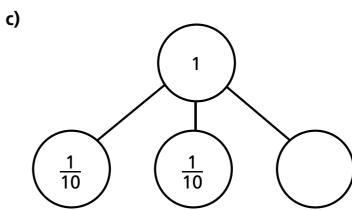
Write fractions to complete the sentences.

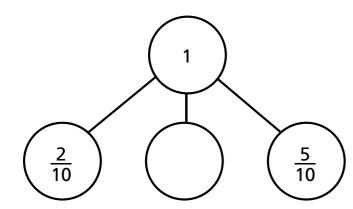

- a) of the counters are yellow.
- b) of the counters are red.
- c) of the counters are green.

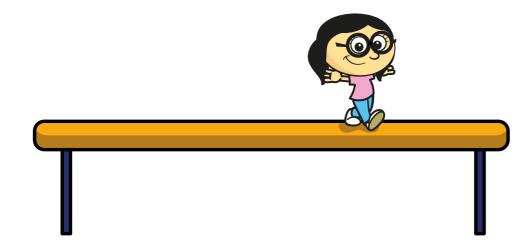
Amir has some blue and yellow cubes.


He makes a tower using 10 cubes.


Investigate how many different towers


Amir can make with 10 cubes, if every tower
has a different fraction of blue and
yellow cubes.


Complete the part-whole models.



d)

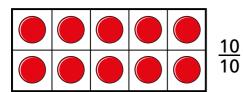
Annie has travelled $\frac{7}{10}$ of the way across a balance beam.

How many tenths does she have left to travel?

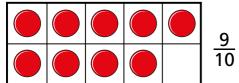
10 boys share 3 pizzas equally.

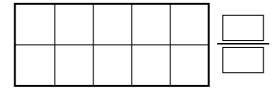
What fraction of a pizza do they each get?

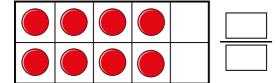
7	Dani has a bag of sweets.
	$\frac{1}{2}$ of the sweets are red.
	$\frac{3}{10}$ of the sweets are yellow.
	The rest are green.
	What fraction of the sweets are green?

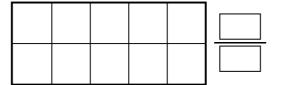

N	Mo also has a bag of sweets.	
1	4 of his sweets are red.	
I	The rest are green or yellow.	
٧	What fraction of Mo's sweets could be green?	
١	What fraction could be yellow?	
H	How many possible answers can you find?	
_		
_		

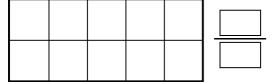
Count in tenths

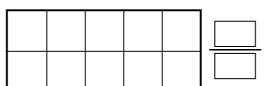

Continue the sequence.











2 Continue the sequence.

Write the missing fractions in each sequence.

a)

<u>1</u>

<u>2</u> 10

<u>4</u> 10

<u>6</u> 10 <u>7</u>

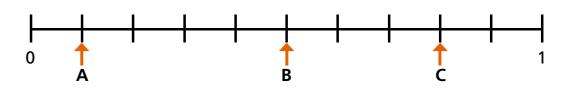
<u>9</u> 10

b)

<u>10</u> 10 <u>9</u> 10

<u>7</u>

<u>5</u> 10

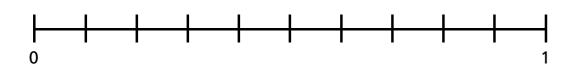




<u>2</u> 10

1	
10	

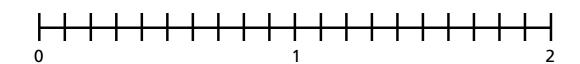
What fraction is each arrow pointing to?


a)

<u>9</u> 10

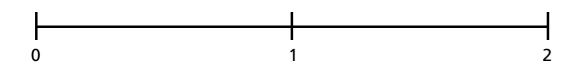
<u>3</u> 10

<u>10</u> 10


b)

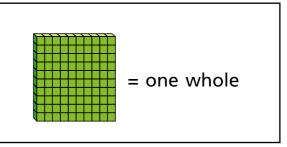
<u>14</u> 10

<u>18</u> 10


Draw and label arrows to estimate the position of the fractions on the number lines.

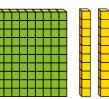
a)

15 10



b)

<u>11</u> 10



What number is represented in each picture?

Whitney is thinking of a fraction.

My fraction is more than one whole but less than 2 My fraction has an odd number as the numerator.

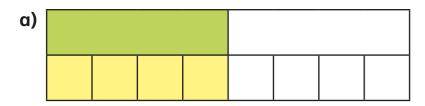
What could Whitney's fraction be? List all the possible fractions.

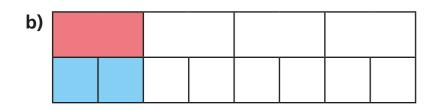
Compare answers with a partner.

Equivalent fractions (1)


Shade the bar models to represent the fractions.

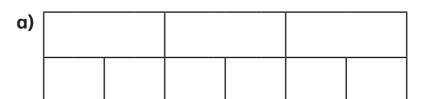
a) Shade $\frac{1}{2}$ of the bar model.


b) Shade $\frac{2}{4}$ of the bar model.

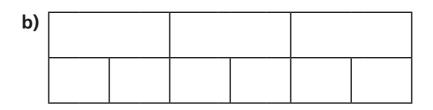

What do you notice?

Complete the equivalent fractions.

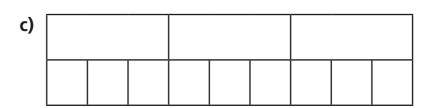
$$\frac{1}{2} = \frac{\boxed{}}{8}$$



$$\frac{1}{4} = \frac{2}{\boxed{}}$$


c)								

$$\frac{3}{4} = \frac{6}{\boxed{}}$$


3 Shade the bar models to represent the equivalent fractions.

$$\frac{1}{3} = \frac{2}{6}$$

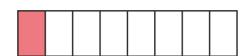
$$\frac{2}{3} = \frac{4}{6}$$

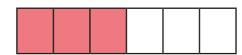
$$\frac{1}{3} = \frac{3}{9}$$



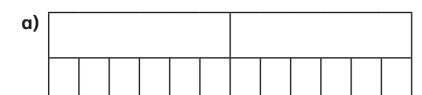
$$\frac{2}{3} = \frac{6}{9}$$

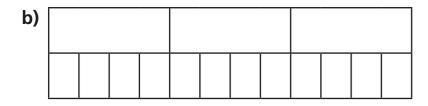
Can you find any more equivalent fractions using the bar models?

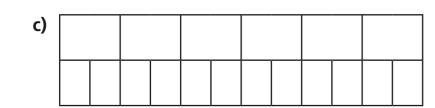



1	
2	

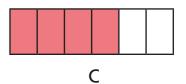
<u>1</u> 3

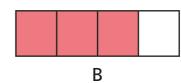

1/4

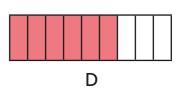

1/8


Shade the bar models to complete the equivalent fractions.

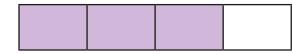
$$\frac{1}{2} = \frac{\boxed{}}{12}$$


$$\frac{1}{3} = \frac{\boxed{}}{12}$$

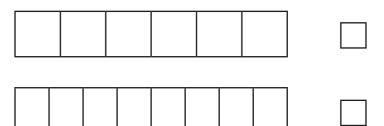

$$\frac{1}{6} = \frac{\boxed{}}{12}$$


The bar models represent fractions.

Α



Which is the odd one out? _____


Why do you think this?

Tick the bar models that can be used to show a fraction that is equivalent to $\frac{3}{4}$

Shade the bar models to support your answers.

Talk to a partner about your answers.

