

## Calculation Policy Statement

This policy demonstrates the calculation methods to be taught, to the majority of pupils at Ellington Primary School, in the four operations, beginning in EYFS and carrying on to Year 6.

Aims of the Calculation Policy at Ellington Primary School

At Ellington Primary School we hope to:

- to provide a consistent and progressive approach in teaching calculation strategies throughout the school
- to ensure mental methods are strengthened and refined
- to ensure that children have knowledge of number facts and an understanding of the four operations
- to ensure calculation is taught and embedded through problem solving

Mental methods of calculation at Ellington Primary School

The ability to calculate mentally forms the basis of all methods of calculation and has to be maintained and refined. It requires:

- building on efficient counting strategies by the use of structured practice and repetition and recognising how the operations relate to one another
- providing children with a good understanding of the four number operations
- applying strategies that they have learned in a variety of contexts including written calculations

Secure mental calculation requires the ability to:

- recall key number facts instantly - for example, all addition and subtraction facts for each number to at least 10, sums and differences of multiples of 10 and multiplication facts up to $12 \times 12$
- use taught strategies to work out the calculation
- understand how the rules and laws of arithmetic are used and applied - for example, to add or subtract mentally combinations of one and two digit numbers

The six Rs of oral and mental calculation:
Children's mental calculations can be supported by the following six features. There is a brief description of the learning focus and an outline of possible activities. These are not independent: oral and mental work may address more than one feature of learning and have more than one purpose. What is important is that the activity is purposeful and children understand what they are engaged in and required to learn during the oral and mental activity. The six Rs provide a vocabulary and guide to use when identifying the purposes of oral and mental work; they are not meant to provide a coverage checklist.

| Six Rs | Learning Focus | Possible Activities |
| :---: | :---: | :---: |
| Rehearse | To practise and consolidate existing skills, usually mental calculation skills, set in a context to involve children in problem solving through the use and application of these skills; use of vocabulary and language of number, properties of shapes or describing and reasoning. | Interpret words such as more, less, sum, altogether, difference, subtract; find missing numbers or missing angles on a straight line; say the number of days in four weeks or the number of 5 p coins that make up 35 p; describe part-revealed shapes, hidden solids; describe patterns or relationships; explain decisions or why something meets criteria. |
| Recall | To secure knowledge of facts, usually number facts; build up speed and accuracy; recall quickly names and properties of shapes, units of measure or types of charts, graphs to represent data. | Count on and back in steps of constant size; recite the 6-times table and derive associated division facts; name a shape with five sides or a solid with five flat faces; list properties of cuboids; state units of time and their relationships. |
| Refresh | To draw on and revisit previous learning; to assess, review and strengthen children's previously acquired knowledge and skills relevant to later learning; return to aspects of mathematics with which the children have had difficulty; draw out key points from learning. | Refresh multiplication facts or properties of shapes and associated vocabulary; find factor pairs for given multiples; return to earlier work on identifying fractional parts of given shapes; locate shapes in a grid as preparation for lesson on coordinates; refer to general cases and identify new cases. |
| Refine | To sharpen methods and procedures; explain strategies and solutions; extend ideas and develop and deepen the children's knowledge; reinforce their understanding of key concepts; build on earlier learning so that strategies and techniques become more efficient and precise. | Find differences between two two-digit numbers, extend to three-digit numbers to develop skill; find $10 \%$ of quantities, then $5 \%$ and $20 \%$ by halving and doubling; use audible and quiet counting techniques to extend skills; give coordinates of shapes in different orientations to hone concept; review informal calculation strategies. |
| Read | To use mathematical vocabulary and interpret images, diagrams and symbols correctly; read number sentences and provide equivalents; describe and explain diagrams and features involving scales, tables or graphs; identify shapes from a list of their properties; read and interpret word problems and puzzles; create their own problems and lines of enquiry. | Tell a story using an interactive bar chart, alter the chart for children to retell the story; start with a number sentence (e.g. $2+11=13$ ) children generate and read equivalent statements for 13 ; read values on scales with different intervals; read information about a shape and eliminate possible shapes; set number sentences in given contexts; read others' results and offer new questions and ideas for enquiry. |
| Reason | To use and apply acquired knowledge, skills and understanding; make informed choices and decisions, predict and hypothesise; use deductive reasoning to eliminate or conclude; provide examples that satisfy a condition always, sometimes or never and say why. | Sort shapes into groups and give reasons for selection; discuss why alternative methods of calculation work and when to use them; decide what calculation to do in a problem and explain the choice; deduce a solid from a 2-D picture; use fractions to express proportions; draw conclusions from given statements to solve puzzles. |


| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Combining two parts to make a whole: part-whole model | Use part part whole model. <br> Use cubes to add two numbers together as a group or in a bar. | $\underbrace{020}_{\text {38as }} \underbrace{030}_{\text {zalls }}$ <br> Use pictures to add two numbers together as a group or in a bar. | $10=6+4=7 \begin{aligned} & \text { Use the part-part } \\ & \text { whole diagram as } \\ & \text { shown above to move } \\ & \text { into the abstract. } \end{aligned}$ |
| Starting at the bigger number and counting on | Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. | $12+5=17$ <br> Start at the larger number on the number line and count on in ones or in one jump to find the answer. | $5+12=17$ <br> Place the larger number in your head and count on the smaller number to find your answer. |
| Regrouping to make <br> 10. <br> This is an essential skill for column addition later. | $6+5=11$ <br> Start with the bigger number and use the smaller number to make 10 . Use ten frames. | Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10 . $9+5=14$ <br> (1) 4 | $7+4=11$ <br> If I am at seven, how many more do I need to make 10 . How many more do I add on now? |
| Represent \& use number bonds and related subtraction facts within 20 | 2 more than 5 . |  | Emphasis should be on the language <br> ' 1 more than 5 is equal to 6 .' <br> ' 2 more than 5 is 7.' <br> ' 8 is 3 more than 5.' |


| Objective \＆ Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Adding multiples of ten | Model using dienes and bead strings | Use representations for base ten． | $\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$ |
| Use known number facts <br> Part part whole | Children ex－ plore ways of making num－ bers within 20 | $\begin{gathered} \text { 20 } \square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$ | $\square$ $+1=16$ <br> $16-1=$ $\square$ <br> $1+$ $\square$ $\square=16$ <br> 16 － $\square$ $\square=1$ |
| Using known facts |  | $\begin{aligned} \because+\therefore & =\therefore \\ \\|\\|+\\|\\| & =\\| \\|\\| \\| \\ \square+\text { 昌 } & =\text { 昌昌 } \end{aligned}$ <br> Children draw representations of $\mathrm{H}, \mathrm{T}$ and O | $3+4=7$ <br> leads to $30+40=70$ <br> leads to $300+400=700$ |
| Bar model | $3+4=7$ | $7+3=10$ | 23 25 <br> $?$ $23+25=48$ |


| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Add a two digit number and ones | $17+5=22$ <br> Use ten frame to make 'magic ten <br> Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$ | Use part part whole and number line to model. | $\begin{aligned} & 17+5=22 \\ & \text { Explore related facts } \\ & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$ |
| Add a 2 digit number and tens | Explore that the ones digit does not change |  | $\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$ |
| Add two 2-digit numbers | 品 / P/ 品 <br> Model using dienes, place value counters and numicon | Use number line and bridge ten using part whole if necessary. | $\begin{gathered} 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$ |
| Add three 1-digit numbers | Combine to make 10 first if possible, or bridge 10 then add third digit | Regroup and draw representation. | $\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ <br> Combine the two numbers that make/ bridge ten then add on the third. |




| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Taking away ones. | Use physical objects, counters, cubes etc to show how objects can be taken away. | Cross out drawn objects to show what has been taken away. | $7-4=3$ $16-9=7$ |
| Counting back | Move objects away from the group, counting backwards. <br> Move the beads $\square$ along the bead string as you count backwards. | Count back in ones using a number line. | Put 13 in your head, count back 4 . What number are you at? |
| Find the Difference | Compare objects and amounts | Count on using a number line to find the difference. | Hannah has 12 sweets and her sister has 5 . How many more does Hannah have than her sister.? |


| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Represent and use number bonds and related subtraction facts within 20 <br> Part Part Whole model | Link to addition. Use PPW model to model the inverse. <br> If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$ | Use pictorial representations to show the part. | Move to using numbers within the part whole model. |
| Make 10 | $14-9$ <br> Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5 . | $13-7=6 \underbrace{13-7}_{-4}$ <br> Jump back 3 first, then another 4 . Use ten as the stopping point. | $16-8$ <br> How many do we take off first to get to 10 ? How many left to take off? |
| Bar model | $5-2=3$ |  | 8 2$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$ |


| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Regroup a ten into ten ones | Use a PV chart to show how to change a ten into ten ones, use the term 'take and make' | $\begin{aligned} & \text { 33, 录 } \\ & 20-4= \end{aligned}$ | $20-4=16$ |
| Partitioning to subtract without regrouping. <br> 'Friendly numbers' | $34-13=21$ <br> Use Dienes to show how to partition the number when subtracting without regrouping. | Children draw representations of Dienes and cross off. <br> - $43-21=22$ | $43-21=22$ |
| Make ten strategy <br> Progression should be crossing one ten, crossing more than one ten, crossing the hundreds. | Use a bead bar or bead strings to model counting to next ten and the rest. | Use a number line to count on to next ten and then the rest. | $93-76=17$ |
|  |  |  |  |


| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Column subtraction without regrouping (friendly numbers) | Use base 10 or Numicon to model | Darw representations to support understanding | $\begin{gathered} 47-24=23 \\ -40+7 \\ -20+4 \\ \hline 20+3 \\ \hline \end{gathered}$ <br> Intermediate step may be needed to lead to clear subtraction understanding. |
| Column subtraction with regrouping | Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange. | $\begin{array}{r} 45 \\ \frac{-29}{16} \frac{\text { Tens } 10 \text { nes }}{\text { ATID }} 08080 \\ 70 \\ 10+6=16 \end{array}$ <br> Children may draw base ten or PV counters and cross off. | Begin by partitioning into pv columns <br> Then move to formal method. |
|  |  |  |  |


| Objective \& Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Subtracting tens and ones <br> Year 4 subtract with up to 4 digits. <br> Introduce decimal subtraction through context of money | 234-179$\odot$ $\odot$ 0 <br> $\odot \bigcirc$ $0 \odot \bigcirc$ 0000 <br> $\odot$ $0 \odot$ 000 <br>  $0 \odot 0 \odot$ 00 <br>  $\odot$ 000 <br> Model process of exchange using Numicon, base ten and then move to PV counters. | Children to draw pv counters and show their exchange-see Y3 | Use the phrase 'take and make' for exchange |
| Year 5-Subtract with at least 4 digits, including money and measures. <br> Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal | As Year 4 | Children to draw pv counters and show their exchange-see Y3 | $\begin{array}{r} { }^{2} x^{10} x^{10} 0^{16} \\ -\quad 2128 \\ \hline 28,928 \end{array}$ <br> Use zeros for place- $\begin{array}{r} { }^{10} 7^{\prime}{ }^{\prime} 6^{\prime} 9 \cdot 0 \\ -\quad 372 \cdot 5 \\ \hline 6796 \cdot 5 \end{array}$ |
| Year 6-Subtract with increasingly large and more complex numbers and decimal values. |  |  |  |


|  <br> Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Doubling | Use practical activities using manipultives including cubes and Numicon to demonstrate doubling | Draw pictures to show how to double numbers <br> Double 4 is 8 | Partition a number and then double each part before recombining it back together. |
| Counting in multiples | Count the groups as children are skip counting, children may use their fingers as they are skip counting. <br> (a) <br> (e) $\square$ | Children make representations to show counting in multiples. | Count in multiples of a number aloud. <br> Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$ |
| Making equal groups and counting the total | Use manipulatives to create equal groups. | Draw to show $2 \times 3=6$ <br> Draw and make representations | $2 \times 4=8$ |



|  <br> Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Doubling | Model doubling using dienes and PV counters. | Draw pictures and representations to show how to double numbers | Partition a number and then double each part before recombining it back together. |
| Counting in multiples of $2,3,4,5,10$ from 0 (repeated addition) | Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.$5+5+5+5+5+5+5+5=40$111 111 111 111 <br>     | Number lines, counting sticks and bar models should be used to show representation of counting in multiples. <br> 3 <br> 3 <br> 3 <br> 3 | Count in multiples of a number aloud. <br> Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ $\square$ |




| Objective \& Strategy | Concrete | Pictorial | Abstract |  |
| :---: | :---: | :---: | :---: | :---: |
| Grid method recap from year 3 for 2 digits $\times 1$ digit <br> Move to multiplying <br> 3 digit numbers by <br> 1 digit. (year 4 expectation) | Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows <br> Fill each row with 126 <br> Add up each colt making any exchanges needed | Children can represent their work with place value counters in a way that they understand. <br> They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. | Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$ |  |
| Column multiplication | Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ <br> It is important at this stage that they always multiply the ones first. <br> The corresponding long multiplication is modelled alongside | $x$ 300 20 7 <br> 4 1200 80 28 <br> The grid method my be used to show how this relates to a formal written method. <br> Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods. |  |  |









## Long Division

Step 1-a remainder in the ones

$$
4 \longdiv { h t o } \begin{array} { l } 
{ 0 4 1 R 1 } \\
{ \hline 1 6 5 }
\end{array}
$$

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .

$$
8 \longdiv { \begin{array} { l } 
{ \text { th hto } } \\
{ 0 4 0 0 R 7 } \\
{ 3 2 0 7 }
\end{array} }
$$

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7 .



Long Division
Step 2-a remainder in any of the place values

| 1. Divide. | 2. Multiply \& subtract. | 3. Drop down the next digit. |
| :---: | :---: | :---: |
| $\begin{aligned} & h^{h t o} \\ & 2 \longdiv { 1 } \\ & 2 \longdiv { 2 7 8 } \end{aligned}$ <br> Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred. | $\begin{aligned} & \quad \begin{array}{l} h t o \\ 1 \\ \frac{-2}{0} \end{array} . \end{aligned}$ <br> Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero. | $\begin{gathered} h: 0 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \frac{1}{7} \end{gathered}$ <br> Next, drop down the 7 of the tens next to the zero. |
| Divide. | Multiply \& subtract. | Drop down the next digit. |
| Divide 2 into 7. Place 3 into the quotient. | $\begin{gathered} h: 0 \\ 2 \longdiv { 2 7 8 } \\ -2 \\ \hline 07 \\ -\quad 6 \\ \hline 1 \end{gathered}$ <br> Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten. | $\begin{gathered} h t o \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ <br> Next, drop down the 8 of the ones next to the 1 leftover ten. |
| 1. Divide. | 2. Multiply \& subtract. | 3. Drop down the next digit. |
| $\begin{aligned} & h t o \\ & 139 \\ & 2 \longdiv { 2 7 8 } \\ & -2 \\ & \hline 07 \\ & -\quad 6 \\ & \hline 18 \end{aligned}$ <br> Divide 2 into 18. Place 9 into the quotient. | $\begin{aligned} & h 10 \\ & 139 \\ & 2 \longdiv { 2 7 8 } \\ & -2 \\ & \hline 07 \\ & -\quad 6 \\ & \hline 18 \\ & -18 \\ & \hline 0 \end{aligned}$ <br> Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero. | $\begin{aligned} & h t 0 \\ & 2 \longdiv { 2 7 8 } \\ & \frac{-2}{277} \\ & -\quad 6 \\ & \hline 18 \\ & -18 \end{aligned}$ <br> There are no more digits to drop down. The quotient is 139 . |

